
1

A Novel Framework in Leveraging Optimization of
Physics Models using Quantum Computing:

Techniques for the 2-D Hubbard Model
Jefferson Lin

Abstract—The new and emerging field of quantum computing
harnesses the understanding of the complex dynamics of quantum
systems, promising to advance and revolutionize scientific fields
that can be applied in our world. However, realizing this potential
currently faces its challenges: scaling error-corrected qubits,
parameter spaces, and efficiently compiling quantum circuits
given hardware constraints. This paper reviews techniques to
address these obstacles by integrating automatically differen-
tiable quantum circuits (ADQCs) with tensor networks (TN)
to enable reverse-mode automatic differentiation for efficient
optimization. We propose applying this ADQC-TN framework to
the 2D Hubbard model, which is a foundational model of strongly
correlated electron systems exhibiting rich phase diagrams,
including unconventional superconductivity. This framework can
elucidate detailed mechanisms, such as how dopant atoms influ-
ence superconducting electron pairing, by training the model’s
hopping, interaction, chemical potential, and other parameters
on experimental measurements. Robust optimization represents
a pivotal bridge between quantum computing and experimental
condensed matter physics to advance quantum-based materials
modeling and discovery, which has already seen success from the
extension of the ground state of quantum lattice models with low
fidelities. Successfully trained Hubbard models could facilitate
the analysis and understanding of the effects of parameter-tuning
and the potential of defects on superconductivity that can aid
in other future modeling discoveries through bridging the gap
between quantum computing and physical engineering.

I. INTRODUCTION

When John Dalton first discovered the atom, a whole
quantum world was waiting to be unveiled, a world where
the principles of reality break down and what governs is
beyond the naked eye. Based on these quantum mechanics,
Feynman and other scientists envisioned using quantum com-
puters to simulate quantum systems under the premise that an
initial quantum state can be unitarily evolved with a quantum
computer that is polynomial in size and evolution time [1].
Such a potential, where a model Hamiltonian behavior could
be simulated, became more than just an idea that physicists
can use to broaden their understanding and determine what
is intractable with classical, traditional computers, from the
smallest distances to cosmological extents [2]. Because clas-
sical computers are especially bad at simulating quantum
dynamics in predicting how a highly entangled quantum
state will change with time [4], this newfound role of quan-
tum computers in astronomically advanced modeling across
physics, chemistry, and other domains [5] requires new tuning
parameter methodologies to achieve more robust, scalable,
and programmable methods in concurrence with technology

Fig. 1. Illustration of classical computing and quantum computing [3],
showing that quantum computing can utilize quantum properties.

application [6]. To match the new growing demands of limited
hardware, costly simulations, being differentiable, challenging
parameter spaces, and more, finding a way to optimize model
parameters to match real measurements to have more accurate
models and simulations compared to experimental results is
becoming a necessity as shown in Fig. 1.

Classical simulations of physical systems typically begin
by solving differential equations, for the first order has the
approximation x(t+ dt) ≈ x(t)+ f(x)dt. However, when we
try to simulate the microscopic world in classical computers,
the equations of motion are too complex as they are limited by
conventional computing and classical physics. So we must use
quantum computing to simulate quantum systems. Through
quantum computing (QC), a complex quantum system can be
isolated and controlled with sufficient precision to maintain
quantum coherence [7]. We can manipulate these quantum
states themselves, unlike classical computers, by implementing
a universal set of quantum logic gates to approximate any
unitary operation on the simulator’s qubits. Because Hilbert
space grows exponentially with system size dim(Hqubit),

⊗N

simulating quantum many-body dynamics on a classical com-
puter becomes intractable. Quantum simulators can exploit
effects such as entanglement, superposition, and parallelism
to encode and manipulate state space and operations com-
pactly, allowing for massively parallel computation on the state
vector, circumventing the limitations of classical simulation
to develop quantum algorithms that scale sub-exponentially
in resources with the system size and desired accuracy. QC
offers a computational advantage by meticulously using an
exponentially ample Hilbert space for quiet registers (usually
through sampling from quantum states created by random
entangling circuits), but is limited to specific tasks and problem



2

types. This advantage can be seen in molecular simulations
with one such approach using Lie-Trotter-Suzuki product
formulas [8] for Hamiltonian simulations, which reduces scalar
error when each decomposition can be implemented into
a quantum circuit. Similarly, recent developments in more
optimal differentiable quantum generative models DQGMs [9]
(on solving Fokker-Planck SDE equations) sampling enable
the encoding of classical data into quantum states and the
optimization of the quantum circuit parameters. All of this
brings an essential discussion of using these quantum systems
to sample, solve efficiently, and model problems to reap
the far-fetching benefits of QC in cryptography, simulations,
optimization, and machine learning.

II. QUANTUM PRINCIPLES

A. Schrödinger’s Equation

In simulating quantum mechanics, we are first interested in
the solution of the time-dependent Schrodinger equation,

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ|ψ(t)⟩ (1)

where Ĥ = − ℏ2

2m∇
2 + V represents the Hamiltonian or

the total energy of the wavefunction ψ. This can be further
thought of as ψ(t) = e−iHtψ(0), where the operator
e−iHt propagates the initial state ψ(0)′s evolution through
time. The Schrödinger’s equation is a useful representation of
quantum dynamics because it fundamentally describes how
quantum systems evolve and their eigenstates, respectively.
Additionally, it takes a time-independent form Ĥψ = Êψ,
but we will be focusing mainly on the time-dependent form
and the applications resulting from it.

B. The Hamiltonian Approximation

The first idea is to approximate ψ(t+∆t) as (I−iH∆t)ψ(t)
like classical conventions, but, however, it is not satisfactory
enough. We must turn to using the operator e−iH∆t in
ψ(t+∆t) = e−iH∆tψ(t), for a sufficiently small time step ∆t.
For local Hamiltonians like Ising and Hubbard models, we can
efficiently simulate by decomposing into smaller subsystems
such that their complexity is O(polyN), since applying e−iHt

directly is expensive. For Hamiltonians like these as sub-
Hamiltonians, it is first formulated by H =

∑b
aHa. Then, we

can apply the Trotter-Suzuki to approximate and decompose
the time evolution operator,

e−iHt = e−it
∑b

aHa = lim
n→∞

(
b∏
a

e−iHa
t
n

)n
(2)

This simplifies to,(
b∏
a

e−iHa
t
n

)n
+O

(
b2t2

n

)
. (3)

The full Hamiltonian is decomposed into b local terms
Ha with e−iHat representing its approximate evolution under

the error O(b2t2/n) with respect to the number of the local
Hamiltonian terms. For n Trotter steps, there is a tradeoff to
balance between accuracy and efficiency because the error
increases for more terms that do not commute Ha1Ha2 ̸=
Ha2Ha1 under the time evolution e−iHat. So in this first order
error approximation, when b increases, the error increases as
slowly as n time steps is also increased respectively. This
means that at the cost of more matrix multiplication, the
accuracy improves. Let’s take a look at the Hubbard model
as a simulation example.

C. The Hubbard Model

Fig. 2. Illustration of 2-D cartoon quantum tunneling of Hubbard fermions
[10].

The Hubbard model describes quantum tunneling as shown
in Fig. 2 between neighboring lattice sites and on-site interac-
tion between two fermions of opposite spin [11]. To construct
our Hamiltonian, we can imagine a lattice of sites holding up
to two electrons that can be spin up or down, hopping from
one site to the next, written as

Ĥ =−
∑
ij

∑
σ

tij(â
†
iσâjσ + h.c.)

+
1

2

∑
ijkl

∑
σσ′

⟨ij|v|kl⟩â†iσâ
†
jσ′ âlσ′ âkσ.

(4)

where tij is the hopping parameter between sites i and j,
and v the Coulomb potential. Under the two approximations
of restricting hopping to only nearest neighbors and Coulomb
interaction to only on-site [12] and adding a chemical potential
term µ, we have our second quantized 2-D Hubbard model,

Ĥ =− t
∑

⟨i,j⟩,σ

(â†i,σâj,σ + â†j,σâi,σ)

+ U
∑
i

n̂i,↑n̂i,↓ − µ
∑
i,σ

n̂i,σ.
(5)

The first term represents the kinetic energy of electrons t
between neighboring sites ⟨i, j⟩ with a†i,σ (creator) creating an
election occupation at site i with spin σ and aj,σ (annihilator)
removing an electron occupation at site j with spin σ respec-
tively. This is followed by the second term U of the potential
energy from on-site Coulomb repulsion between electrons with
opposite spin using the number operator ni,σ = a†i,σai,σ for
particles with spin σ at site i. The final term µ represents the
chemical potential term needed when describing arbitrary elec-
tron fillings, not just half-fillings, and affects the total number
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of particles. When at half-filling, the Hubbard model exhibits a
Mott metal-insulator transition, taking the system from a metal
to an antiferromagnetic insulator. Beyond the Mott transition,
the Hubbard model provides insights into diverse broken
symmetry phases and phase transitions in strongly correlated
systems. The competition parameters U

t between the potential
energy term U that favors localization and insulating behavior
and the kinetic energy term t that favors delocalization and
metallic behavior, alongside the chemical potential µ, give rise
to the rich physics of magnetism and superconductivity. This
framework of quantum lattices is widely believed to contain
the essential ingredients of high-temperature superconductivity
because of its delicate competition between the parameters.
Doping of charge strips and superconductivity turned by
parameter t′ has shown the prediction of a Luther-Emery (LE)
liquid that demonstrates a close interplay between charge and
superconductor correlations [14]. The Hubbard model thus
serves as a simplified theoretical foundation for understanding
complex interacting quantum materials. However, the model’s
simplicity is deceptive as it is a mathematically difficult
problem to solve due to its many-body nature, with an exact
solution only found in the 1D case [13]. A simple example of
this model is to consider a system with just two sites,

ψ = |n1↑n1↓⟩|n2↑n2↓⟩ (6)

having 24 possible states depending on the kinetic energy
determining how the initial filled each lattice is. This state of
an isolated quantum system with n components is represented
by a state vector in a Hilbert space of dimension 2n possible
states for n qubits, as each qubit can be a superposition of
0 and 1. If we want to simulate the dynamics of a quantum
system by discretizing time into steps of length ∆t at each time
step, we need to multiply the state vector by the propagator
matrix corresponding to evolving the system for a time ∆t.
Therefore, the propagator matrix has dimensions 2n x 2n with
the computation cost scaling as O(2n × 2n) (see Fig. 3). For
most cases, this exponential scaling makes the exact simulation
of quantum systems with even 50-100 qubits completely
impractical on classical computers due to the exponential
growth of the operator that leads to the discussion of using
optimization techniques.

Fig. 3. Examples of Big-O complexities [15]. Our goal is finding a low
computational cost towards the bottom of the graph.

III. QUANTUM COMPUTING

A. Jordan Wigner-Mapping

In order to utilize quantum computing, we must transform
the Hamiltonian into a set of operations accessible or under-

standable to quantum computers. Namely, we can use the

Fig. 4. Illustration of state preparation and mapping of models with the
intermediate step of transformation [16].

simple Jordan Wigner transformation for second quantized
Hamiltonians to map occupations to qubit orientations shown
in Fig. 4, simulating fermionic systems on qubits and gates
by using Pauli-X and -Y to satisfy a†i |0⟩i = |1⟩i, ai|0⟩i = 0,
ai|1⟩i = 0, and a†i |1⟩i = 0:

a†i =
Xi − iYi

2
, ai =

Xi + iYi
2

. (7)

For this mapping to capture the antisymmetric characteris-
tics of fermions a†iaj = −a

†
jai, we must intersperse Pauli-Z

to remedy the fact that Pauli Operators do not commute for
XY ̸= −Y X , but rather for XZ = −ZX and Y Z = −ZY :

a†1 =
X1 − iY1

2

⊗
1
⊗

1 . . .
⊗

1

a†2 = Z1

⊗ X2 − iY2
2

⊗
1
⊗

1 . . .
⊗

1

...

a†n = Z1

⊗
Z2

⊗
. . .
⊗ Xn − Yn

2
.

(8)

We get,
XiYi = iZi

∴ ni = a†iai =
1− Zi

2
.

(9)

Over the Jordan-Wigner transformation, the Hubbard
Hamiltonian in equation (5) becomes

Ĥ =− t

2

∑
⟨i,j⟩

Zj+1:i−1(XiXj + YiYj)

+
U

4

∑
i

(1− Z↑
i )(1− Z

↓
i )

− µ

2

∑
i,σ

(1− Zσi ).

(10)

Other mappings include the Bravyi-Kitaev [17], Parity,
and those that can perform more advanced qubit reductions
available in quantum computing softwares like Qiskit [18].
From this transformation, we can break down the Hamiltonian
into two terms such that H = H0 + H1, where H0 is the
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kinetic term, and H1 the other two interaction terms. Then,
by applying the Trotter-Suzuki decomposition, we get

e−iHt = lim
n→∞

(e−iH0t/ne−iH1t/n)n. (11)

This allows us to approximate the time evolution operator by
breaking up the evolution into successive n short time steps
and repeating while taking larger n improves the accuracy
of the approximation. However, we can begin to see the
complexities and computational cost arising from higher-order
approximations. The natural instinct from this is try to find
optimization techniques to circumvent this.

B. Tensor Network Optimization

Now that we are able to convert our Hamiltonian into
quantum computing language, we have to face the funda-
mental problem of optimizing a quantum circuit: efficiently
exploiting parameters. We can solve this through differentiable
programming given hardware constraints by minimizing the
loss function that encodes the problem we want to solve,

αt+1 = αt − η∇αL(α, t) (12)

where α are the parameters, η the learning rate, and ∇L
the gradient operator on the loss function. This loss function
can be largely responsible for the feedback on how well
a quantum circuit is performing given a set of parameters,
updating it each time for optimization, and is commonly used
in machine learning. We can use tensor networks (TN), useful
mathematical, graphical representations of multi-dimensional
arrays that can store information through tensor nodes in a
computation graph. We can significantly enhance optimization
by exploiting automatic differentiation in the tensor compu-
tation graph. This technique of backpropagation exploits the
chain rule of a partial differential to propagate the gradient
back from the network output and calculate the gradient of
the weight respectively [19]. With the forward pass being

|ψ⟩ = U(α)|ψ0⟩
⟨O⟩ = ⟨ψ|O|ψ⟩ (13)

where U(α) representing a quantum circuit with param-
eters α acting on initial state |ψ0⟩ to product output state
|ψ⟩, followed by the expectation value of O, an observable
represented by a Hermitian operator. We can begin to see
the similarities with the original system quantum evolution
representation for application,

ψ(t) = e−iHtψ(0). (14)

From this, the implications of applying backpropagation
through the expectation value computation to get gradients
with respect to circuit parameters tying to the simulation of
quantum systems are obvious. After this forward pass, we can
backpropagate (backwards pass) this through the chain rule
and see the loss function L depending on the expectation value
⟨O⟩,

∂L

∂α
=

∂L

∂⟨O⟩
· ∂⟨O⟩
∂α

. (15)

Representing this in tensor networks through the traversing
of data flow as in nodes, we can visually see the chain rule
and reverse-mode automatic differentiation [20],

α→W 1 →W 2 · · · →WN → L

∂L

∂α
=

∂L

∂Wn

∂W

∂Wn−1
· · · ∂W

1

∂α
.

←←←←←←←←

(16)

Fig. 5. Illustration of tensor networks through backpropagation to minimize
a loss function [21]. The transaction channels can be represented by multiple
tensors that can split off respectively depending on intended algorithms that
is widely applicable in machine learning. We can also visually see the
backpointing technique in storing checkpoints. Our single α tensor network
serves as a fundamental representation in equation (15).

We can also see that the resulting relationship of O relating
to physically meaningful observable and arbitrary intermediate
tensor W are analogous in the role they play. In order to reduce
memory usage, we can employ the backpointing technique,
conceptually like checkpointing (see Fig. 5), where one can
simply store the tensor every few steps in the. Relying on
differentiating through these tensor networks has shown state-
of-the-art calculations of specific heat of the Ising model,
variational energy, and magnetization of the antiferromagnetic
Heisenberg model [20] as an efficient compression of quantum
states.

C. Automatically Differentiable Quantum Circuits Tensor Net-
works (ADQC-TN)

Now that we have discussed optimization, how can we
leverage these tensor networks and automatically differentiate
them in quantum circuits? We have the tools of TN to
simulate quantum models with ample Hilbert space through
the backpropagation technique to reduce complexity, but what
do we do with them? The simple answer is reframing our
thinking to apply to quantum circuits.

Remember our goal is to simulate a model onto quantum
circuits,

|ψtar⟩ = U(α)|ψevol⟩ (17)
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where |ψtar⟩ is the target state evolved from operation U(α)
on |ψevol⟩ state. We want to minimize the error between the
target and evolved state,

F = − 1

N
ln |⟨ψtar|U(α)|ψevol⟩| (18)

where F is the negative logarithmic fidelity that quantifies
the closeness between the |ψtar⟩ and |ψevol⟩ states over opera-
tion U(α). Therefore, we just need to find a particular set of
unitary gates or operations on δ∗ parameters that minimizes
F , our respective loss function. This can be done by updating
the gates towards the opposite direction of their gradients and
integrated with TN [22],

δ• = UΛV †

δ•1 ← δ•0 − η
∂F

∂δ•

(19)

where δ• projects to a set of unitary gates δ∗ under Tr(δ•δ)
to be maximized from constraint δ . This is then fed into the
backpropagation integrated with TN. All we have to do after
is apply our desired Hamiltonian into this system and compare
it with traditional methods.

IV. APPLICATIONS

A. Variational Quantum Eigensolver (VQE)

One current, powerful application is the Variational Quan-
tum Eigensolver (VQE) [23], a hybrid quantum-classical algo-
rithm to find a Hamiltonian’s minimum eigenvalue and eigen-
state. VQE aims to minimize energy by optimizing a set of
parameters α for a chosen ansatz quantum circuit. The circuit
has two purposes: prepare the ansatz wavefunction |ψ(α)⟩ and
measure the expectation value ⟨ψ(α)|H|ψ(α)⟩ which gives
the energy. A classical optimizer uses this measurement to
adjust α to lower the energy toward the true ground state.
Starting with initial parameters |ψ(α0)⟩ = e−iH|ψ(α0)⟩|ψ1⟩,
the ansatz circuit prepares the trial wavefunction, where |ψ1⟩
is a simple starting state. In variational quantum algorithms
like VQE, the loss function is typically the expectation value,
and by minimizing the loss, we find the ground state energy.
Measuring the expectation energy E(α0) provides an upper
bound on the true ground state energy,

E(α0) = ⟨ψ(α0)|H|ψ(α0)⟩ ≥ E0. (20)

The classical optimizer then generates new parameters α1,
using E(α0) to guide it closer to the minimum. This opti-
mization loop of state preparation, measurement, and classical
processing repeats until converging on an ansatz |ψ(α∗)⟩ that
minimizes E(α) ≈ E0. This hybrid quantum algorithm is
useful for quantum chemistry and optimization problems that
looks analogous to the issues we can solve with ADTNAQCs.
VQE implementations on existing quantum hardware are lim-
ited by qubit error rates, the number of qubits available, and
the allowable gate depth [24], and new techniques implement-
ing better optimization methods and representation of these
compact spaces like ADQCs and TNs are necessary for the
continued further application of quantum computing despite
quantum hardware restrictions.

Fig. 6. Illustration of the application of quantum computing for manipulating
data sets [28]. We can visually see here the usage of optimization techniques
and programming for a desired output, dependant on the algorithm.

B. Modeling

The advent of Automatically Differentiable Quantum Cir-
cuits (ADQCs) allows for preparing many-qubit target quan-
tum states by optimizing gates through differentiable program-
ming via backpropagation. ADQCs introduce unconstrained,
differentiable latent gates projected to unitary gates satis-
fying quantum constraints, and therefore optimizing these
latent gates layer-by-layer yields efficient state preparation
using ADQCs, obtains low fidelities, and can reduce matrix
product state (MPS) representations with a compression ratio
of r ∼ O(10−3) [22]. Likewise, tensor networks are a
powerful mathematical tool that can provide a compact rep-
resentation of high-dimensional quantum states and quantum
many-body physics [25, 26] by formulating tensor networks
as differentiable computation graphs. A key advantage is
directly computing tensor network output gradients, enabling
the evaluation of observables. This yields optimal performance
for infinite 2D tensor networks and finding the ground states
of lattice models [20] . When integrated with ADQCs, TN
can demonstrate intelligent quantum circuit construction com-
bining machine learning techniques, a promising approach
for training and optimizing quantum systems using modern
differentiable programming. Such applications can already be
seen in the development of built-in ADQC programs such
as Yao [27], which can optimize a variational circuit with
10,000 layers using reverse-mode AD and constructing 20 site
Heisenberg Hamiltonian in approximately 5 seconds.

V. DISCUSSION

Further technical examination of this ADQC-TN approach
can reveal several aspects of the modeled Hamiltonian and
optimization as a field. Firstly, alternative transformations
such as the Bravyi-Kitaev algorithm offer potential for more
efficient reductions that could reduce overall circuit depth,
and more detailed analysis quantitively comparing circuit
complexity under different fermionic qubit mappings could
in advantageous transformations for a given model. Secondly,
this tensor network architecture design space is extensive and
dependent heavily on depth, entanglement, connectivity, and
the desired model. Architectures balancing expressiveness and
trainability may be particularly well-suited, but systematic
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evaluation of tensor network configurations’ usage will be
essential in creating performant models applicable beyond
physical domains. Thirdly, while mathematically convenient,
reliance on fidelity as the sole optimization metric is not ideal
and is best alongside incorporating alternative domain-specific
loss functions for training towards precise experimental ob-
jectives under a given objective. Fourthly, while simplified,
differentiable programming is still in its infancy and requires
more development on its widespread software, meaning mod-
eling difficulty and complexity will depend similarly on the
software used.

This paper lays a framework for optimizing the 2-D Hub-
bard Hamiltonian model implementable in quantum program-
ming languages. For other models alike, it can be done in three
simplistic steps: This paper lays out a framework for optimiz-
ing the 2-D Hubbard Hamiltonian model implementable in
quantum programming languages. For other models alike, it
can be done in three simplistic steps:

This paper lays a framework for optimizing the 2-D Hub-
bard Hamiltonian model implementable in quantum program-
ming languages. For other models alike, it can be done in three
simplistic steps:

1. Integrate our desired Hamiltonian model and utilize any
unique simplifications and/or approximations in equation (5).

2. Transform that Hamiltonian to qubit (QC) language via
the desired transformation seen in equation (10)

3. Apply an optimization method to find the desired output
and/or parameters of the Hamiltonian model using equation
(18).

VI. FUTURE RESEARCH

There are two main sectors of future research from ADQC-
TN optimization on models: other physical models and ap-
plicable optimization. Future research into non-local Hamil-
tonians and other respective techniques and approximations
extends to models beyond the 2D Hubbard model. Simi-
larly, higher dimensions and more complex, accurate mod-
els are good starting points. Having a framework to see
which methods apply to what, so that it can be tailored
for real applications, would be branching out. The frame-
work proposed for optimizing parameters in this paper relies
mainly on quantum computing software. The work in more
advanced and enhanced libraries and programing could de-
termine usability, automation, utilization, and integration into
real-world systems. New loss functions, flexible architectures,
and alternative quiet mappings, in combination with more
methodological and pragmatic engineering fronts, will aid in
the discovery and application of accurate, performant quantum
models. Furthermore, future research can also be seen in real-
world applications of the techniques discussed in this paper.
The integration of machine learning methods with automatic
differentiation and tensor networks using quantum circuits can
help in model tuning, complex algorithms, and optimization
in the fields of artificial intelligence and quantum simulation.
This can already be seen in [29], where hybrid neural network
weight tensorization can be represented by a tensor-train data
format to compress parameters that developed an energy-
efficient machine learning accelerator. More motivation can

be seen in [30] for the intellectual combination of tensor
networks and neural networks for potential applications in
information fusion and more specifically, what neural networks
has already seen development like natural language processing
and robotics can be improved too.

VII. CONCLUSION

Pursuing a simplified framework in leveraging optimization
and programming techniques that can be used to transition
from theoretical quantum physics to applied quantum comput-
ing is essential in further understanding the promising use of
new quantum simulation methods and integration of quantum-
hybrid methods over just classical simulations. This paper
has proposed a framework for optimizing parameters of the
2D Hubbard model by integrating automatically differentiable
quantum circuits with tensor networks. We reviewed tech-
niques for gradient-based optimization via backpropagation
through ADQCs to enable efficient tuning of quantum circuits.
The Hubbard model was transformed into qubit operators
using the Jordan-Wigner transformation to implement on a
quantum circuit. By minimizing the fidelity error between tar-
get and evolved states, the ADQC-TN framework can optimize
model parameters to match experimental measurements. The
proposed ADQC-TN optimization framework for simulating
the 2D Hubbard model offers a path forward despite hardware
constraints. As quantum computing matures, techniques like
differentiable programming will help implement precise quan-
tum models to revolutionize our understanding of complex
quantum materials. New research into complex quantum sys-
tems and their applications in quantum computing is necessary
for the diversity of software and paradigms. Techniques like
differentiable programming leverage what is already known
but make it better and more applicable to reduce problems
from new growing demands like computational complexity
costly simulations, and is scalable, to name a few. By outlining
a methodology of the potential application of automatic dif-
ferentiation using tensor networks in models like the Hubbard
model, this paper summarizes the problems faced and current,
novel solutions to it. This can go beyond simulating just
local models and be more applicable to other parameters in
increasing complexity.

The goal of the quantum world is to help us understand more
of what we do not know. Going step by step, from applying
quantum principles to quantum computing, we can see the
potential, impactful usage of QC in future scientific research.
Beginning with trying to make sense of the quantum world,
scientists worldwide have come close to finding new ways to
overcome computational complexity and current limiting hard-
ware constraints. Continued research in better, more efficient
optimization, transformation, and programming software will
go a long way in helping people understand, apply, and make
use of the quantum world. Less than a century ago, we were
still meddling with classical computing, but now, step by step,
we can improve and apply these tools that were once just
ideas that people imagined. As the times of our technology
try to catch up, looking from a different perspective and way
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of thinking will help in the endeavor to make sense of and
apply these innovations despite the limitations of our time.
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